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PREFACE

This book is designed to support a one-semester course in numerical methods. It has been 
written for students who want to learn and apply numerical methods in order to solve prob-
lems in engineering and science. As such, the methods are motivated by problems rather 
than by mathematics. That said, sufficient theory is provided so that students come away 
with insight into the techniques and their shortcomings.

MATLAB® provides a great environment for such a course. Although other en-
vironments (e.g., Excel/VBA, Mathcad) or languages (e.g., Fortran 90, C++) could 
have been chosen, MATLAB presently offers a nice combination of handy program-
ming features with powerful built-in numerical capabilities. On the one hand, its  
M-file programming environment allows students to implement moderately compli-
cated algorithms in a structured and coherent fashion. On the other hand, its built-in, 
numerical capabilities empower students to solve more difficult problems without try-
ing to “reinvent the wheel.”

The basic content, organization, and pedagogy of the third edition are essentially pre-
served in the fourth edition. In particular, the conversational writing style is intentionally 
maintained in order to make the book easier to read. This book tries to speak directly to the 
reader and is designed in part to be a tool for self-teaching.

That said, this edition differs from the past edition in three major ways: (1) new 
material, (2) new and revised homework problems, and (3) an appendix introducing 
Simulink.

1.	 New Content. I have included new and enhanced sections on a number of topics. The 
primary additions include material on some MATLAB functions not included in previ-
ous editions (e.g., fsolve, integrate, bvp4c), some new applications of Monte Carlo 
for problems such as integration and optimization, and MATLAB’s new way to pass 
parameters to function functions.

2.	 New Homework Problems. Most of the end-of-chapter problems have been modified, 
and a variety of new problems have been added. In particular, an effort has been made 
to include several new problems for each chapter that are more challenging and dif-
ficult than the problems in the previous edition.

3.	 I have developed a short primer on Simulink which I have my students read prior to 
covering that topic. Although I recognize that some professors may not choose to 
cover Simulink, I included it as a teaching aid for those that do.
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Aside from the new material and problems, the fourth edition is very similar to the 
third. In particular, I have endeavored to maintain most of the features contributing to its 
pedagogical effectiveness including extensive use of worked examples and engineering and 
scientific applications. As with the previous edition, I have made a concerted effort to make 
this book as “student-friendly” as possible. Thus, I’ve tried to keep my explanations straight-
forward and practical.

Although my primary intent is to empower students by providing them with a sound 
introduction to numerical problem solving, I have the ancillary objective of making this 
introduction exciting and pleasurable. I believe that motivated students who enjoy engi-
neering and science, problem solving, mathematics—and yes—programming, will ulti-
mately make better professionals. If my book fosters enthusiasm and appreciation for these 
subjects, I will consider the effort a success.

Acknowledgments.  Several members of the McGraw-Hill team have contributed to 
this  project. Special thanks are due to Jolynn Kilburg, Thomas Scaife, Ph.D., Chelsea 
Haupt, Ph.D., and Jeni McAtee for their encouragement, support, and direction.

During the course of this project, the folks at The MathWorks, Inc., have truly dem-
onstrated their overall excellence as well as their strong commitment to engineering and 
science education. In particular, Naomi Fernandes of The MathWorks, Inc., Book Program 
has been especially helpful and Jared Wasserman of the MathWorks Technical Support 
Department was of great help with technical questions.

The generosity of the Berger family has provided me with the opportunity to work on 
creative projects such as this book dealing with computing and engineering. In addition, 
my colleagues in the School of Engineering at Tufts, notably Masoud Sanayei, Babak 
Moaveni, Luis Dorfmann, Rob White, Linda Abriola, and Laurie Baise, have been very 
supportive and helpful.

Significant suggestions were also given by a number of colleagues. In particular, Dave 
Clough (University of Colorado–Boulder), and Mike Gustafson (Duke University) pro-
vided valuable ideas and suggestions. In addition, a number of reviewers provided use-
ful feedback and advice including Karen Dow Ambtman (University of Alberta), Jalal  
Behzadi (Shahid Chamran University), Eric Cochran (Iowa State University), Frederic 
Gibou (University of California at Santa Barbara), Jane Grande-Allen (Rice University), 
Raphael Haftka (University of Florida), Scott Hendricks (Virginia Tech University), Ming 
Huang (University of San Diego), Oleg Igoshin (Rice University), David Jack (Baylor Uni-
versity), Se Won Lee (Sungkyunkwan University), Clare McCabe (Vanderbilt University), 
Eckart Meiburg (University of California at Santa Barbara), Luis Ricardez (University of 
Waterloo), James Rottman (University of California, San Diego), Bingjing Su (University  
of Cincinnati), Chin-An Tan (Wayne State University), Joseph Tipton (The University 
of Evansville), Marion W. Vance (Arizona State University), Jonathan Vande Geest  
(University of Arizona), Leah J. Walker (Arkansas State University), Qiang Hu (University  
of Alabama, Huntsville), Yukinobu Tanimoto (Tufts University), Henning T. Søgaard 
(Aarhus University), and Jimmy Feng (University of British Columbia).

It should be stressed that although I received useful advice from the aforementioned 
individuals, I am responsible for any inaccuracies or mistakes you may find in this book. 
Please contact me via e-mail if you should detect any errors.

	 PREFACE� xv
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PEDAGOGICAL TOOLS

Theory Presented as It Informs Key Concepts.    The text is intended for Numerical 
Methods users, not developers. Therefore, theory is not included for “theory’s sake,” for ex-
ample no proofs. Theory is included as it informs key concepts such as the Taylor series, con-
vergence, condition, etc. Hence, the student is shown how the theory connects with practical 
issues in problem solving.

Introductory MATLAB Material.    The text includes two introductory chapters on how to 
use MATLAB. Chapter 2 shows students how to perform computations and create graphs 
in MATLAB’s standard command mode. Chapter 3 provides a primer on developing 
numerical programs via MATLAB M-file functions. Thus, the text provides students with 
the means to develop their own numerical algorithms as well as to tap into MATLAB’s 
powerful built-in routines.

Algorithms Presented Using MATLAB M-files.    Instead of using pseudocode, this book 
presents algorithms as well-structured MATLAB M-files. Aside from being useful com-
puter programs, these provide students with models for their own M-files that they will 
develop as homework exercises.

Worked Examples and Case Studies.    Extensive worked examples are laid out in detail 
so that students can clearly follow the steps in each numerical computation. The case stud-
ies consist of engineering and science applications which are more complex and richer than 
the worked examples. They are placed at the ends of selected chapters with the intention 
of (1) illustrating the nuances of the methods and (2) showing more realistically how the 
methods along with MATLAB are applied for problem solving.

Problem Sets.    The text includes a wide variety of problems. Many are drawn from en-
gineering and scientific disciplines. Others are used to illustrate numerical techniques and 
theoretical concepts. Problems include those that can be solved with a pocket calculator as 
well as others that require computer solution with MATLAB.

Useful Appendices and Indexes.    Appendix A contains MATLAB commands,  Appendix 
B contains M-file functions, and new Appendix C contains a brief Simulink primer.

Instructor Resources.    Solutions Manual, Lecture PowerPoints, Text images in Power-
Point, M-files and additional MATLAB resources are available through Connect®.
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1

Part One

Modeling, Computers,  
and Error Analysis

	 1.1	 MOTIVATION

What are numerical methods and why should you study them? 
Numerical methods are techniques by which mathematical problems are formulated 

so that they can be solved with arithmetic and logical operations. Because digital comput-
ers excel at performing such operations, numerical methods are sometimes referred to as 
computer mathematics.

In the pre–computer era, the time and drudgery of implementing such calculations 
seriously limited their practical use. However, with the advent of fast, inexpensive digital 
computers, the role of numerical methods in engineering and scientific problem solving 
has exploded. Because they figure so prominently in much of our work, I believe that 
numerical methods should be a part of every engineer’s and scientist’s basic education. 
Just as we all must have solid foundations in the other areas of mathematics and science, 
we should also have a fundamental understanding of numerical methods. In particular, we 

should have a solid appreciation of both 
their capabilities and their limitations.

Beyond contributing to your overall 
education, there are several additional 
reasons why you should study numerical 
methods:

1.	�Numerical methods greatly expand the 
types of problems you can address. 
They are capable of handling large sys-
tems of equations, nonlinearities, and 
complicated geometries that are not 
uncommon in engineering and science 
and that are often impossible to solve 
analytically with standard calculus. As 
such, they greatly enhance your prob-
lem-solving skills.

2.	�Numerical methods allow you to use 
“canned” software with insight. During

cha97962_ch01_001-026.indd   1 08/11/16   12:51 pm



2	 PART 1  Modeling, Computers, and Error Analysis 

	 your career, you will invariably have occasion to use commercially available prepack-
aged computer programs that involve numerical methods. The intelligent use of these 
programs is greatly enhanced by an understanding of the basic theory underlying the 
methods. In the absence of such understanding, you will be left to treat such packages 
as “black boxes” with little critical insight into their inner workings or the validity of 
the results they produce.

3.	 Many problems cannot be approached using canned programs. If you are conversant 
with numerical methods, and are adept at computer programming, you can design 
your own programs to solve problems without having to buy or commission expensive 
software.

4.	 Numerical methods are an efficient vehicle for learning to use computers. Because nu-
merical methods are expressly designed for computer implementation, they are ideal for 
illustrating the computer’s powers and limitations. When you successfully implement 
numerical methods on a computer, and then apply them to solve otherwise intractable 
problems, you will be provided with a dramatic demonstration of how computers can 
serve your professional development. At the same time, you will also learn to acknowl-
edge and control the errors of approximation that are part and parcel of large-scale 
numerical calculations.

5.	 Numerical methods provide a vehicle for you to reinforce your understanding of math-
ematics. Because one function of numerical methods is to reduce higher mathematics  
to basic arithmetic operations, they get at the “nuts and bolts” of some otherwise 
obscure topics. Enhanced understanding and insight can result from this alternative 
perspective.

With these reasons as motivation, we can now set out to understand how numerical 
methods and digital computers work in tandem to generate reliable solutions to mathemati-
cal problems. The remainder of this book is devoted to this task.

	 1.2	 PART ORGANIZATION

This book is divided into six parts. The latter five parts focus on the major areas of nu-
merical methods. Although it might be tempting to jump right into this material, Part One 
consists of four chapters dealing with essential background material.

Chapter 1 provides a concrete example of how a numerical method can be employed 
to solve a real problem. To do this, we develop a mathematical model of a free-falling 
bungee jumper. The model, which is based on Newton’s second law, results in an ordinary 
differential equation. After first using calculus to develop a closed-form solution, we then 
show how a comparable solution can be generated with a simple numerical method. We 
end the chapter with an overview of the major areas of numerical methods that we cover in 
Parts Two through Six.

Chapters 2 and 3 provide an introduction to the MATLAB® software environment. 
Chapter 2 deals with the standard way of operating MATLAB by entering commands one 
at a time in the so-called calculator, or command, mode. This interactive mode provides 
a straightforward means to orient you to the environment and illustrates how it is used for 
common operations such as performing calculations and creating plots.
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	 1.2	 PART ORGANIZATION� 3

Chapter 3 shows how MATLAB’s programming mode provides a vehicle for assem-
bling individual commands into algorithms. Thus, our intent is to illustrate how MATLAB 
serves as a convenient programming environment to develop your own software.

Chapter 4 deals with the important topic of error analysis, which must be understood 
for the effective use of numerical methods. The first part of the chapter focuses on the 
roundoff errors that result because digital computers cannot represent some quantities 
exactly. The latter part addresses truncation errors that arise from using an approximation 
in place of an exact mathematical procedure.
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Mathematical Modeling, 
Numerical Methods,  
and Problem Solving

1

CHAPTER OBJECTIVES

The primary objective of this chapter is to provide you with a concrete idea of what 
numerical methods are and how they relate to engineering and scientific problem  
solving. Specific objectives and topics covered are

•	 Learning how mathematical models can be formulated on the basis of scientific 
principles to simulate the behavior of a simple physical system.

•	 Understanding how numerical methods afford a means to generate solutions in a 
manner that can be implemented on a digital computer.

•	 Understanding the different types of conservation laws that lie beneath the models 
used in the various engineering disciplines and appreciating the difference  
between steady-state and dynamic solutions of these models.

•	 Learning about the different types of numerical methods we will cover in this 
book.

YOU’VE GOT A PROBLEM

Suppose that a bungee-jumping company hires you. You’re given the task of 
predicting the velocity of a jumper (Fig. 1.1) as a function of time during the 
free-fall part of the jump. This information will be used as part of a larger 

analysis to determine the length and required strength of the bungee cord for jumpers 
of different mass.

You know from your studies of physics that the acceleration should be equal to the ratio 
of the force to the mass (Newton’s second law). Based on this insight and your knowledge 
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	 1.1	 A Simple Mathematical Model� 5

of physics and fluid mechanics, you develop the following mathematical model for the rate 
of change of velocity with respect to time, 

​​ dυ ___ dt ​​ = g − ​​ 
cd ___ m ​​υ2

where υ = downward vertical velocity (m/s), t = time (s), g = the acceleration due to 
gravity (≅ 9.81 m/s2), cd  = a lumped drag coefficient (kg/m), and m = the jumper’s  
mass (kg). The drag coefficient is called “lumped” because its magnitude depends on fac-
tors such as the jumper’s area and the fluid density (see Sec. 1.4). 

Because this is a differential equation, you know that calculus might be used to obtain 
an analytical or exact solution for υ as a function of t. However, in the following pages, we 
will illustrate an alternative solution approach. This will involve developing a computer-
oriented numerical or approximate solution.

Aside from showing you how the computer can be used to solve this particular prob-
lem, our more general objective will be to illustrate (a) what numerical methods are and 
(b) how they figure in engineering and scientific problem solving. In so doing, we will also 
show how mathematical models figure prominently in the way engineers and scientists use 
numerical methods in their work.

	 1.1	 A SIMPLE MATHEMATICAL MODEL

A mathematical model can be broadly defined as a formulation or equation that expresses 
the essential features of a physical system or process in mathematical terms. In a very gen-
eral sense, it can be represented as a functional relationship of the form

Dependent  
variable  = f ​​(  independent  

variables , parameters, forcing  
functions   )​​� (1.1)

where the dependent variable is a characteristic that typically reflects the behavior or state 
of the system; the independent variables are usually dimensions, such as time and space, 
along which the system’s behavior is being determined; the parameters are reflective of 
the system’s properties or composition; and the forcing functions are external influences 
acting upon it.

The actual mathematical expression of Eq. (1.1) can range from a simple algebraic 
relationship to large complicated sets of differential equations. For example, on the basis 
of his observations, Newton formulated his second law of motion, which states that the 
time rate of change of momentum of a body is equal to the resultant force acting on it. The 
mathematical expression, or model, of the second law is the well-known equation

F = ma� (1.2)

where F is the net force acting on the body (N, or kg m/s2), m is the mass of the object (kg), 
and a is its acceleration (m/s2).

Upward force
due to air
resistance

Downward
force due
to gravity

FIGURE 1.1
Forces acting 
on a free-falling 
bungee jumper.
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The second law can be recast in the format of Eq. (1.1) by merely dividing both sides 
by m to give

a = ​​ F __ m ​​� (1.3)

where a is the dependent variable reflecting the system’s behavior, F is the forcing func-
tion, and m is a parameter. Note that for this simple case there is no independent variable 
because we are not yet predicting how acceleration varies in time or space.

Equation (1.3) has a number of characteristics that are typical of mathematical models 
of the physical world.

•	 It describes a natural process or system in mathematical terms.
•	 It represents an idealization and simplification of reality. That is, the model ignores 

negligible details of the natural process and focuses on its essential manifestations. 
Thus, the second law does not include the effects of relativity that are of minimal 
importance when applied to objects and forces that interact on or about the earth’s 
surface at velocities and on scales visible to humans.

•	 Finally, it yields reproducible results and, consequently, can be used for predictive 
purposes. For example, if the force on an object and its mass are known, Eq. (1.3) can 
be used to compute acceleration.

Because of its simple algebraic form, the solution of Eq. (1.2) was obtained easily. 
However, other mathematical models of physical phenomena may be much more complex, 
and either cannot be solved exactly or require more sophisticated mathematical techniques 
than simple algebra for their solution. To illustrate a more complex model of this kind, 
Newton’s second law can be used to determine the terminal velocity of a free-falling body 
near the earth’s surface. Our falling body will be a bungee jumper (Fig. 1.1). For this case, 
a model can be derived by expressing the acceleration as the time rate of change of the 
velocity (dυ/dt) and substituting it into Eq. (1.3) to yield

​​ dυ ___ dt ​​ = ​​ F __ m ​​� (1.4)

where υ is velocity (in meters per second). Thus, the rate of change of the velocity is equal 
to the net force acting on the body normalized to its mass. If the net force is positive, the 
object will accelerate. If it is negative, the object will decelerate. If the net force is zero, the 
object’s velocity will remain at a constant level.

Next, we will express the net force in terms of measurable variables and parameters.  
For a body falling within the vicinity of the earth, the net force is composed of two  
opposing forces: the downward pull of gravity FD and the upward force of air resistance FU  
(Fig. 1.1):

F = FD + FU� (1.5)

If force in the downward direction is assigned a positive sign, the second law can be 
used to formulate the force due to gravity as

FD = mg� (1.6)

where g is the acceleration due to gravity (9.81 m/s2).
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Air resistance can be formulated in a variety of ways. Knowledge from the science 
of fluid mechanics suggests that a good first approximation would be to assume that it is 
proportional to the square of the velocity,

FU = −cd υ
2� (1.7)

where cd is a proportionality constant called the lumped drag coefficient (kg/m). Thus, the 
greater the fall velocity, the greater the upward force due to air resistance. The parameter 
cd accounts for properties of the falling object, such as shape or surface roughness, that af-
fect air resistance. For the present case, cd might be a function of the type of clothing or the 
orientation used by the jumper during free fall.

The net force is the difference between the downward and upward force. Therefore, 
Eqs. (1.4) through (1.7) can be combined to yield

​​ dυ ___ dt ​​ = g − ​​ 
cd ___ m ​​ υ2� (1.8)

Equation (1.8) is a model that relates the acceleration of a falling object to the forces 
acting on it. It is a differential equation because it is written in terms of the differential rate 
of change (dυ/dt) of the variable that we are interested in predicting. However, in contrast 
to the solution of Newton’s second law in Eq. (1.3), the exact solution of Eq. (1.8) for the 
velocity of the jumper cannot be obtained using simple algebraic manipulation. Rather, 
more advanced techniques such as those of calculus must be applied to obtain an exact or 
analytical solution. For example, if the jumper is initially at rest (υ = 0 at t = 0), calculus 
can be used to solve Eq. (1.8) for

υ(t) = ​​√
___

 ​ gm ___ cd
 ​ ​​ tanh​​( ​√___

 ​ 
gcd ___ m ​ ​t  )​​� (1.9)

where tanh is the hyperbolic tangent that can be either computed directly1 or via the more 
elementary exponential function as in

tanh x = ​​ e
x − e−x

 _______ ex + e−x ​​� (1.10)

Note that Eq. (1.9) is cast in the general form of Eq. (1.1) where υ(t) is the dependent 
variable, t is the independent variable, cd and m are parameters, and g is the forcing function.

	 EXAMPLE 1.1	 Analytical Solution to the Bungee Jumper Problem

Problem Statement.    A bungee jumper with a mass of 68.1 kg leaps from a stationary 
hot air balloon. Use Eq. (1.9) to compute velocity for the first 12 s of free fall. Also deter-
mine the terminal velocity that will be attained for an infinitely long cord (or alternatively, 
the jumpmaster is having a particularly bad day!). Use a drag coefficient of 0.25 kg/m.

1 MATLAB allows direct calculation of the hyperbolic tangent via the built-in function tanh(x).
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Solution.  Inserting the parameters into Eq. (1.9) yields

υ(t) = ​​√
_________

 ​ 9.81(68.1) _________ 0.25 ​ ​​  tanh​​( ​√
_________

 ​ 9.81(0.25) _________ 68.1 ​ ​  t  )​​ = 51.6938 tanh(0.18977t)

which can be used to compute

t, s	 υ, m/s

 0	 0
 2	 18.7292
 4	 33.1118
 6	 42.0762
 8	 46.9575
10	 49.4214
12	 50.6175
∞	 51.6938

According to the model, the jumper accelerates rapidly (Fig. 1.2). A velocity of 
49.4214 m/s (about 110 mi/hr) is attained after 10 s. Note also that after a sufficiently 

0

20

40

60

0 4 8 12
t, s

Terminal velocity

υ,
 m

/s

FIGURE 1.2
The analytical solution for the bungee jumper problem as computed in Example 1.1. Velocity 
increases with time and asymptotically approaches a terminal velocity.
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long time, a constant velocity, called the terminal velocity, of 51.6983 m/s (115.6 mi/hr) 
is reached. This velocity is constant because, eventually, the force of gravity will be in 
balance with the air resistance. Thus, the net force is zero and acceleration has ceased.

Equation (1.9) is called an analytical or closed-form solution because it exactly satis-
fies the original differential equation. Unfortunately, there are many mathematical models 
that cannot be solved exactly. In many of these cases, the only alternative is to develop a 
numerical solution that approximates the exact solution.

Numerical methods are those in which the mathematical problem is reformulated so it 
can be solved by arithmetic operations. This can be illustrated for Eq. (1.8) by realizing that 
the time rate of change of velocity can be approximated by (Fig. 1.3):

​​ dυ ___ dt ​​ ≅ ​​ Δυ ___ Δt ​​ = ​​ 
υ(ti+1) − υ(ti )  ___________ ti+1 − ti

 ​​ � (1.11)

where Δυ and Δt are differences in velocity and time computed over finite intervals,  
υ(ti) is velocity at an initial time ti, and υ(ti+1) is velocity at some later time ti+1. Note that 
dυ/dt ≅ Δυ/Δt is approximate because Δt is finite. Remember from calculus that

​​ dυ ___ dt ​​ =​​ lim    
Δt→0

 ​​​ ​ Δυ ___ Δt ​​

Equation (1.11) represents the reverse process.

υ(ti+1)

ti+1 t

∆t

υ(ti)

∆υ

ti

True slope
dυ/dt

Approximate slope
∆υ υ(ti+1) − υ(ti)

ti+1 − ti∆t =

FIGURE 1.3 
The use of a finite difference to approximate the first derivative of υ with respect to t.
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Equation (1.11) is called a finite-difference approximation of the derivative at time ti. 
It can be substituted into Eq. (1.8) to give

​​ 
υ(ti+1) − υ(ti )  ___________ ti+1 − ti

 ​​  = g − ​​ 
cd ___ m ​​ υ(ti )2

This equation can then be rearranged to yield

υ(ti+1) = υ(ti ) + ​​[  g − ​ 
cd ___ m ​ υ(ti )2  ]​​ (ti+1 − ti )� (1.12)

Notice that the term in brackets is the right-hand side of the differential equation itself 
[Eq. (1.8)]. That is, it provides a means to compute the rate of change or slope of υ. Thus, 
the equation can be rewritten more concisely as

υi+1 = υi + ​​ 
dυi ___ dt ​​ Δt� (1.13)

where the nomenclature υi designates velocity at time ti, and Δt = ti+1 − ti.
We can now see that the differential equation has been transformed into an equation that 

can be used to determine the velocity algebraically at ti+1 using the slope and previous values 
of υ and t. If you are given an initial value for velocity at some time ti, you can easily compute 
velocity at a later time ti+1. This new value of velocity at ti+1 can in turn be employed to extend 
the computation to velocity at ti+2 and so on. Thus at any time along the way,

New value = old value + slope × step size

This approach is formally called Euler’s method. We’ll discuss it in more detail when we 
turn to differential equations later in this book.

	 EXAMPLE 1.2	 Numerical Solution to the Bungee Jumper Problem

Problem Statement.    Perform the same computation as in Example 1.1 but use Eq. (1.12) 
to compute velocity with Euler’s method. Employ a step size of 2 s for the calculation.

Solution.    At the start of the computation (t0 = 0), the velocity of the jumper is zero. 
Using this information and the parameter values from Example 1.1, Eq. (1.12) can be used 
to compute velocity at t1 = 2 s:

υ = 0 + ​​[  9.81 − ​ 0.25 ____ 68.1 ​ (0)2  ]​​ × 2 = 19.62 m/s

For the next interval (from t = 2 to 4 s), the computation is repeated, with the result

υ = 19.62 + ​​[  9.81 − ​ 0.25 ____ 68.1 ​ (19.62)2  ]​​ × 2 = 36.4137 m/s
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The calculation is continued in a similar fashion to obtain additional values:

t, s	 υ, m/s

   0	 0
 2	 19.6200
 4	 36.4137
 6	 46.2983
 8	 50.1802
10	 51.3123
12	 51.6008
∞	 51.6938

The results are plotted in Fig. 1.4 along with the exact solution. We can see that the numeri-
cal method captures the essential features of the exact solution. However, because we have 
employed straight-line segments to approximate a continuously curving function, there is 
some discrepancy between the two results. One way to minimize such discrepancies is to 
use a smaller step size. For example, applying Eq. (1.12) at 1-s intervals results in a smaller 
error, as the straight-line segments track closer to the true solution. Using hand calcula-
tions, the effort associated with using smaller and smaller step sizes would make such 
numerical solutions impractical. However, with the aid of the computer, large numbers of 
calculations can be performed easily. Thus, you can accurately model the velocity of the 
jumper without having to solve the differential equation exactly.

0

20

40

60

0 4 8 12
t, s

Terminal velocity

υ,
 m

/s

Approximate,
numerical solution

Exact, analytical
solution

FIGURE 1.4 
Comparison of the numerical and analytical solutions for the bungee jumper problem.
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As in Example 1.2, a computational price must be paid for a more accurate numeri-
cal result. Each halving of the step size to attain more accuracy leads to a doubling of the 
number of computations. Thus, we see that there is a trade-off between accuracy and com-
putational effort. Such trade-offs figure prominently in numerical methods and constitute 
an important theme of this book. 

	 1.2	 CONSERVATION LAWS IN ENGINEERING AND SCIENCE

Aside from Newton’s second law, there are other major organizing principles in science 
and engineering. Among the most important of these are the conservation laws. Although 
they form the basis for a variety of complicated and powerful mathematical models, the 
great conservation laws of science and engineering are conceptually easy to understand. 
They all boil down to

Change = increases − decreases� (1.14)

This is precisely the format that we employed when using Newton’s law to develop a force 
balance for the bungee jumper [Eq. (1.8)].

Although simple, Eq. (1.14) embodies one of the most fundamental ways in which 
conservation laws are used in engineering and science—that is, to predict changes 
with  respect to time. We will give it a special name—the time-variable (or transient) 
computation.

Aside from predicting changes, another way in which conservation laws are applied is 
for cases where change is nonexistent. If change is zero, Eq. (1.14) becomes

Change = 0 = increases − decreases
or

Increases = decreases� (1.15)

Thus, if no change occurs, the increases and decreases must be in balance. This case, which 
is also given a special name—the steady-state calculation—has many applications in engi-
neering and science. For example, for steady-state incompressible fluid flow in pipes, the 
flow into a junction must be balanced by flow going out, as in

Flow in = flow out
For the junction in Fig. 1.5, the balance that can be used to compute that the flow out of the 
fourth pipe must be 60.

For the bungee jumper, the steady-state condition would correspond to the case where 
the net force was zero or [Eq. (1.8) with dυ/dt = 0]

mg = cd υ
2� (1.16)

Thus, at steady state, the downward and upward forces are in balance and Eq. (1.16) can 
be solved for the terminal velocity

υ = ​​√
___

 ​ gm ___ cd
 ​ ​​

Although Eqs. (1.14) and (1.15) might appear trivially simple, they embody the two funda-
mental ways that conservation laws are employed in engineering and science. As such, they 
will form an important part of our efforts in subsequent chapters to illustrate the connection 
between numerical methods and engineering and science.
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Table 1.1 summarizes some models and associated conservation laws that figure 
prominently in engineering. Many chemical engineering problems involve mass balances 
for reactors. The mass balance is derived from the conservation of mass. It specifies that 
the change of mass of a chemical in the reactor depends on the amount of mass flowing in 
minus the mass flowing out.

Civil and mechanical engineers often focus on models developed from the conserva-
tion of momentum. For civil engineering, force balances are utilized to analyze structures 
such as the simple truss in Table 1.1. The same principles are employed for the mechanical 
engineering case studies to analyze the transient up-and-down motion or vibrations of an 
automobile.

Finally, electrical engineering studies employ both current and energy balances to model 
electric circuits. The current balance, which results from the conservation of charge, is simi-
lar in spirit to the flow balance depicted in Fig. 1.5. Just as flow must balance at the junction 
of pipes, electric current must balance at the junction of electric wires. The energy balance 
specifies that the changes of voltage around any loop of the circuit must add up to zero.

It should be noted that there are many other branches of engineering beyond chemical,  
civil, electrical, and mechanical. Many of these are related to the Big Four. For example, chem-
ical engineering skills are used extensively in areas such as environmental, petroleum, and bio-
medical engineering. Similarly, aerospace engineering has much in common with mechanical 
engineering. I will endeavor to include examples from these areas in the coming pages.

	 1.3	 NUMERICAL METHODS COVERED IN THIS BOOK

Euler’s method was chosen for this introductory chapter because it is typical of many 
other classes of numerical methods. In essence, most consist of recasting mathematical 
operations into the simple kind of algebraic and logical operations compatible with digital 
computers. Figure 1.6 summarizes the major areas covered in this text. 

Pipe 2
Flow in = 80

Pipe 3
Flow out = 120

Pipe 4
Flow out = ?

Pipe 1
Flow in = 100

FIGURE 1.5 
A flow balance for steady incompressible fluid flow at the junction of pipes.
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